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Reliability and safety knowledge is very sparse. Its realistic and objective application is nearly impossible.
Additional knowlcedge is needed 1o increase the reasoning power of reliability and safety knowledge bases.
The conventional fractal analysis has been used for the study of chaos in physical systems. Its possible role
in the evaluation of reliability/safety knowledge bases is studied in this paper. ‘The only precondition for
the application of fractal analysis is an ability to distinguish between specific and general knowledge
items. ‘This cnables us to deteet a level of inconsistency between mostly subjective additional knowledge
items and the existing knowledge bases. The fractal analysis can characterise the knowledge base as one
integrated complex. However, knowledge acquisition requires “local™ evaluations as well. Therefore a
discriminative analysis is used. A realistic man-machine dialogue (an evaluation of the mean time between

failures of control valves) supported by the fractal and/or discriminative analysis is presented.

The RS (reliability and safety) knowledge acquisition is extremely time-consuming 2.
It is based on a heterogencous knowledge structure?. Realistic RS decision making is an
iterative process composed of many sub tasks. It is an ill-structured process and there-
fore its description is nearly always ad hoc*.

In order 1o model complex RS systems effectivelly, all the available information
must be used. Even very uncertain and subjective knowledge is valuable. Tt is the
cffectiveness with which uncertain/subjective knowledge is used which is very often
the main distinction between good and bad models of the same system™,

Primary information (knowledge) is such information which is available at the very
beginning of its analysis. Re-used information (c.g. literature) supplies primary
information provided that original observations are not accessible dircctly’. Re-used
information is the most important and frequent type of industrial information itcm.
Provided this primary knowledge (represented c.g. by tables of numerical values) is
applied directly no expert system and its relatively powerful reasoning mechanism can
be used™?.

A limited amount of a primary information sct and information loss during the
formal treatment can be significantly influenced by a suitable choice of pre-processing
mode!'?, A pre-processing is the formal treatment of primary data in order 1o increase
data addressability and instant applicability.
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Addressability is a property of information item to be stored within a given informa-
tion structure (c.g. data base, knowledge basc). An instant applicability means a possi-
bility to usc the results of preprocessing for desired purposces without any further
trcatment.

KNOWLEDGE UPGRADING

The conventional RS records are the most important industrial RS knowledge®. They
represent an artificially “mummificd” skeleton of knowledge structure because of bad
knowledge acquisition methods used to develop them!',

The RS records (usually graphs, tables and simple shallow equations) are not suitable
for an cfficicnt uncertainty reasoning. An upgrading of these valuable records is a
retrospective application of knowledge engineering algorithms to insert additional
information (¢.g. expert guess) into them to increase their reasoning power!2.

A skeleton of knowledge, when observed by an expert, always invokes a certain
inspiration. This inspiration can represent a substantial increase in c.g. discriminative
power of a future knowledge basce. Therefore it is very important.

Complex RS knowledge is vague, sparse and inconsistent. Any real life situation will
be described by more than one category of knowldge. Combining different types of
knowledge requires that more detailed (accurate) knowledge be degraded to the level of
the less accurate knowledge.

This is particularly severe when information is “shochorned” into formalism chosen
(c.g. statistical analysis) not for their good match to the structure of the knowledge but
c.g. for computational cfficiency and software availability. Any knowledge mani-
pulation always involves a loss of information.

A genceral strategy for dealing with such knowledge is to modify it as little as
possible thus reducing the information loss. This necessitates keeping primary
knowledge intact as far as possible and making optimal use of all available formal
tools. Therefore the broadest possible spectrum of formal calculi must be used.

The following uncertain caleuli are likely to be used in RS models: probability!?,

16

fuzzy'® and rough' scts, qualitative'® and order of magnitude!” reasoning,.

Industrial experience has proved that fuzzy models are casily understood, no special
mathcmatical or formal knowledge is needed to take part in realistic upgrading acti-

vities and fuzzy models can be quickly modified. For details sce c.g. refs'$19,

INTEGRATED FRACTAL AND DISCRIMINATIVE ANALYSIS

There has for some time been a feeling that chaos, which is frequently observed in
various physical and chemical phenomena, cannot be suitably described by traditional

20

uncertainty calculi=®. This was the basic motivation for the development of novel

. . . . . 0.2
mathematical tools for dealing with chaotic phenomena=%2!,
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Fractal analysis has alrcady been used for the solution of some realistic problems
which have a very close relation with reliability studics. An example is metal ruptu-
2022,

There are many rcasons why fractal analysis scems to be uscful for the study of
realistic physical phenomena® =22 However from the point of view of the application
of fractal analysis to reliability knowledge bases, the most interesting is the possibility
of using fractal analysis 1o characterise the chaos level in a knowledge basc. Such an
analysis may cven take account of the mutual interrelationships between information
items i.c. structure®!. By “chaos” we mean, broadly, a lack of consistency, or cohe-
rence, in the knowledge base.

What is presented in Appendix 2 is a tailored view of multidimensional fractal analy-
sis. It is not completely rigorous and consistent with the main body of “theoretical
fractal analysis”. However, it is computationally tractable, and allows an imple-
mentation to be developed suitable for handling multidimensional tasks that can be run
on PC-compatible computers.

The basic idea of the new algorithm can be described by analogy to the gradual
disappearance of detail in a picture when the picture is gradually moved away from an
observer. The advantage of this new “fractal philosophy” is that it matches the requi-
rements that were specified for the chaos analysis of realistic knowledge bases.

Very broadly, one can say that historically soft sciences (e.g. psychology), tended to
be language oriented. Their methodology wa s largely phenomenological. Initially the
soft sciences took over the formal tools which were traditionally used in the natural
sciences and engineering® 2,

However, the classical formal tools (c.g. sets of differential equations) developed for
the natural sciences were not always applicable to the soft sciences. The main reason
was the extreme vagueness and [requent inconsistencies in primary knowledge.

As a result, several new formal tools for dealing with uncertaintics have been deve-
loped inside the soft sciences which embody many interesting ideas. It may not
necessarily be obvious how to do so, but it is certainly worth considering how some of
these ideas may be transferred into the natural sciences.

Naturally psychological and cognitive studies tend to be centred on a human or other
animal subject. The transfer of techniques from the soft sciences into different scienti-
fic (engincering) branches will in general require the specification of some sort of engi-
neering equivalent of the subject of a psychological experiment.

A scvere problem which must be solved in all RS studices is an cvaluation of
knowledge base “reliability”. Indirectly, it can be quantified by its “discriminative
power”. A simple cognitive problem will be used in order to demonstrate an approach
to cvaluation of the discriminative power using methods from soft sciences. A rela-
tively simple cognitive problem is chosen; the mechanism of question answering. For
details sce Appendix 1.

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



Reliability and Safety Knowledge 809

An clementary knowledge of fuzzy sct theory is needed. A sufficient engincering
interpretation of this theory is given c.g. in refs*?7

A knowledge base K is represented by a set of conditional statements.
ifA;and .. A, then B or

il Asjand ... A, then B,y or ¢))

ifA, ;and ... A then B,
Fuzzy scts (see Fig. 1)

ApB i=1,2...m j=1,2...n )

arc onc dimensional fuzzy sets.
As a part of knowledge acquisition activities a scries of gradually modificd
knowledge bases is developed

Ky Ky ... K,. 3)

Knowledge base Ky is a modification of knowledge base Ky. It means that addi-
tional knowledge Ag must be available for such modifications

«wpr

wtAx —= K7, V>W  (see 3). (€))

Meta Heuristics
A reader who has no intention of going into detail can understand what follows if he

intuitively accepts the explanations given in this chapter. These explanations are given
as a set of meta heuristics?. For details see Appendix 1 and Appendix 2.

GRADE OF MEMBERSHIP

Fii. 1 VARIABLE

Piccewise lincar grade of membership b
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Fractal Analysis

— the level of chaos of the knowledge base K (1) can be quantified by fractional
dimension Dy (see (A 2.7))
— il

Dy > Dy (sce (4) )

then the additional knowledge A increased the level of chaos.

Discriminative Power

— the discriminative power of knowledge base K (1) is always related to a diseri-
minative fuzzy set F (see b (A 1.44))

~ the discriminative power P (K) ol the fuzzy set Foin connection with the
knowledge base K can be characterized by point Py in the ternary diagram (sce Fig. 2).
The center of this triangle is 1.

—if

1Py > [Py (0)

then the discriminative power in relation to the fuzzy set Fois decreased by the addi-
tional knowledge Ay (see (4)).

The fractal analysis (sce Appendix 2)) is general i this sense, that it can characterize
the knowledge base as one integrated system. The analysis of discriminative power is
much more specitic. ls specificity can be modificd by a choice ol discriminative sets
(sce Appendix 1).

I 0.18

/ S N

Ternary diagram ol discriminative power analysis, an

N 0.45 Y example
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KNOWLEDGE BASE UPGRADING

Any upgrading activity is ad hoc oriented. It is therefore not possible to present a
generic upgrading algorithm. The below given heuristics have been tested by solving
rcalistic problems. However they are, by no means, the best possible general variants.

— specify several sets of fuzzy sets A, B (sce (2)) which are considered as good
“dictionarics”

— evaluate fractional dimensions of all variants

— test the least chaotic variant using sceveral meaningful discriminative scts
— if the discriminative powers arce rather small then change the dictionarics  (7)

— choose meaningful subsets of variables.

The very nature of the upgrading process climinates any possibility of a formal
description. Therefore a detailed description of the case study is presented.

CASE STUDY

The case study is based on an extensive analysis of control valves in chemical industry.
The dependent variable (see B (2)) is the mean time between failures MTBF. The inde-
pendent variables A (2) are

A, price, As temperature, Ay aggresivity, Ay maintenance quality, As type of motor,
Ag pressure drop, A5 plant type.

The most important step towards good fuzzy knowledge base is the choice of all
fuzzy scts A and B. This step is very subjective. Therefore the integrated fractal and
discriminative analysis is used to minimize the level of subjectivity as much as
possible.

Any upgrading process must start with the first knowledge base K, (3). The speci-
fications ol some one dimensional fuzzy sets Ajj (sce (2)) which are used in K are
summarized in Table 1.

The first 40 statements (;m = 625, sce (1)) are given in the following matrix (see
Table II), where the first row of the matrix represents the following fuzzy simple condi-
tional statement

ifA;is CHE and A, is COL and A; is AGG and . . . then B is 0.2 )
The knowledge base (Table 1) is a concatination of two knowledge sub-bascs

— set of general heuristics
— set of relatively accurate observations. 9)

The upgrading procedure starts with fractal analysis of both sub-bases. The following
dictionarics give less chaotic knowledge base K (see Table 11).

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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The dictionarics for MTBF are not given. Any fuzzy specification of numerical valuc
X given in Table 1l can be reconstructed:

a=05X,b=c=X,d=15X. (10)

Much more transparent are two or three dimensional tasks. Therefore only a three
dimensional tasks (sce (7)) of the complete model (Table IT) is studiced:

MTBF = [ (price, temperature).

Using standard statistical procedures the following estimation of the fractal
dimension D is obtained from cquation (A 2.11):

D = 2.04 = 0.106. (1n

. ~ RN
For details sce refs!h28,

Tabre |
Specifications of dimensional fuzzy sets Ay (see Fig. 1)

Variable Value Abbreviation a b ¢ d
Al cheap CHE 0.1 0.3 0.5 08
medium MED 0.6 1.0 1.0 1.5
expensive EXP 1.0 3.0 3.0 6.0
A2 cold COL =50 0 0 80
warm WAR 0 100 100 150
hot HOT 120 200 200 600
A3 aggressive AGG 1 1 1 1
ncutral NEU 2 2 2 2
medium MED 0 1.5 1.5 3
Aa no NO 0 1 I A
standard NOR 2 3 3 4
excellent EXC 3 4 4 S
As hydraulic HYD 1 1 1 \
pneumatic PNE 2 2 2 2
electric ELE 3 3 3 3
positioner POS 4 4 4 4
Ao low LOW 0.0 0.5 0.6 0.9
high HIG 0.8 1.0 1.0 1.3
medium MED 0.6 0.7 0.8 0.9
A7 inorganic ANO 1 1 1 1
organic ORG 2 2 2 2

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



Reliability and Safety Knowledge

813

TasLe Il

Matrix of statements

. Variable
Statement
No.

A A, A, Ay As Ag A, B

1 CHE COL AGG NO PNE HIG ANO 0.2
2 CHE COL AGG NO ELE HIG ORG 0.3
3 CHIE HOT AGG NO ELE HIG ORG 0.3
4 CHE HOT AGG NO PNE HIG ANO 0.3
5 CHE COL AGG NOR ELE HIG ANO 0.3
6 CHE COL AGG NO ELE HIG ANO 0.3
7 CHE HOT AGG NO ELE HIG ANO 0.3
8 CHE HOT AGG NO HYD HIG ANO 0.3
9 CHE COL AGG NO PNE: HIG ORG 0.4
10 CHE COL AGG NO HYD HIG ORG 0.4
1 CHE COL AGG NOR PNE HIG ANO 0.4
12 CHE WAR AGG NO) PNE HIG ANO 0.4
13 CHE COL NL:U NO ELE HIG ANO 0.4
14 CIHE WAR AGG NO ELE HIG ANO 0.4
1S CHE COL AGG NO POS HIG ANO 0.4
16 CHE HOT AGG NO POS HIG ANO 0.4
17 CHE WAR AGG NO ELE HIG ORG 0.5
18 CHE COL AGG NO POS HIG ORG 0.5
19 CHE COL AGG NO PNE LLOW ANO 0.5
20 CHE COL AGG NO ELE LOW ANO 0.5
21 CHE COL AGG NO POS LOW ANO 0.5
22 CHE COL NEU NO PNE HIG ANO 0.5
23 CHE HO'T AGG NOR ELE HIG ANO 0.5
24 CHE HOT NEU NO ELE HIG ANO 0.5
25 MED COL AGG NO ELE HIG ANO 0.5
26 CHE HoT AGG NO HYD HIG ANO 0.5
27 CHE COL AGG NO ELE HIG ORG 0.6
28 CHIE HO'T AGG NO PNI: HIG ORG 0.6
29 CHE COL AGG NOR ELE HIG ORG 0.6
30 CHE COL NEU NO ELLE HIG ORG 0.6
31 MED COL AGG NO ELE HIG ORG 0.6
32 CHE HOT AGG NO HYD HIG ORG 0.6
33 CHE HOT AGG NO PNE LOW ANO 0.6
34 CHE WAR AGG NO ELE L.LOW ANO 0.6
35 CHE HOT AGG NO ELLE LOW ANO 0.6
36 CHE COL AGG NO HYD LOW ANO 0.6
37 CHE HOT AGG NOR PNE HIG ANO 0.6
38 MIED HOT AGG NO ELE HIG ANO 0.6
39 CHE COL AGG NOR HYD HIG ANO 0.6
40 CHE COL NLEU NO HYD HIG ANO 0.6

625 .
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A simple fractal analysis of the two sub-bascs (9) gives the following results:

sct of obscrvations Dy = 1.0363 = 0.0047
heuristics D, = 2.2843 = 0.3701. (12)

So the observations (9) arec much less chaotic than the heuristics:
Dy, > D, . (13)

From the point of reliability enginecring, the dependent variable is the mean time
between failures MTBF. Thercfore the upgraded dictionary (10) is tested using the
following five discriminative MTBF (Table IV).

The results are given in a graphic form in Fig. 3. The results for 1, 2, 4 arc accept-
able. The reason is the meta heuristic (6). The Fig. 3 indicates that there is “somcthing
wrong” with thosc statements in Table I which have such MTBFs which belong to

TapLe 11
Knowledge base K5 (see Fig. 1)

Variable Value Abbreviation a b ¢ d
Ay cheap CHE 0.0 0.3 0.3 0.6
medium MLED 03 1.0 1.0 2.0
expensive EXP 1.0 3.0 4.0 6.0
A2 cold COL =50 0 0 100
warm WAR 0 100 100 200
hot HOT 150 200 200 450
A3 aggressive AGG 1 1 1 1
ncutral NEEU 2 2 2 2
medium MED 0 1.5 1.5 3
Ay no NO 0 1 1 2
standard NOR 2 3 3 4
excellent EXC 3 4 4 5
As hydraulic HYD 1 1 1 1
pneumatic PNE 2 2 2 2
electric ELE 3 3 3 3
positioner POS 4 4 4 4
Ao low [.LOW 0.0 0.5 0.6 0.9
high HIG 0.7 1.0 1.0 1.3
medium MED 0.6 0.7 0.7 0.8
A7 inorganic ANO 1 1 1 o
organic ORG 2 2 2 2
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“medium” or “very long” (see Table IV and Fig. 3). This information partially identi-
fics what must be changed. The new dictionaries are in Table V.

A realistic upgrading study requires several hundreds modifications'28, It is there-
fore not possible to present the whole man-computer dialogue in detail.

CONCLUSION

In practicc a RS engincer makes semi optimal decisions using his past expericnee
which is not formalized at all®. Usually no severe mistakes are made provided more or
less routine problems are solved. However rather often non-traditional decisions must
be made™.

Many different engineering activities (accident analysis, loss prevention) depend
heavily (if not exclusively) on old records. Therefore the upgrading is inevitable.

Tasre IV
Five discriminative MTBE (see Figs 1 and 3)

MTBF a b ¢ d Point
Very short 0.0 0.3 0.4 0.8 1
Short 0.4 0.8 1.0 2.0 2
Medium 1.0 2.0 3.5 6.0 3
Long 35 6.0 7.0 14.0 4
Very long 6.0 14.0 20.0 40.0 5

G, 3

GCiraphic representation of the diseriminative power off

tive diseriminative scis (/8)

Totlect Czech: Chemt Commun. (Vol. 58) (194923
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This work is at an carly stage of development. It is rather novel approach to validate
knowledge bases. However it has been used for several realistic cases. For example:

— high pressure vessel
— crisp ruptures

— control valves

— life time of
— ball bearings (vibrations)
— rubber scalings

— steam gencerators of nuclear power plants.

These realistic case studics demonstrate that new formal tools are nceded to integrate
objectively identifiable knowledge and subjective experience and analogy. It is not yet
clear how to create the best network of calculi to upgrade knowledge. This structure is
cffected by the structure of available objective/subjective knowledge and by the expert

TABLE V
New dictionaries (see Fig. 1)

Variable Value Abbreviation a b c d
Al cheap CHE 0.0 0.3 0.3 0.7
medium MED 0.3 1.0 1.2 2.0
expensive EXP 1.0 3.0 4.8 8.0
A2 cold COL =50 0 0 100
warm WAR 0 100 100 200
hot HOT 150 200 200 450
A3 aggressive AGG 1 1 1 1
neutral NEU 2 2 2 2
medium MED 0 1 1.5 3
Aa no NO 0 1 1 2
standard NOR 2 3 3 4
excellent EXC 3 4 4 S
As hydraulic HYD 1 1 1 2
pncumatic PNE 1 2 2 2
clectric ELL 3 3 3 3
positioner POS 4 4 4 4
Ao low LOW 0.0 03 0.5 0.9
high HIG 0.7 0.8 1.1 1.3
medium MED 0.5 0.7 0.6 0.8
A7 inorganic ANO 1 1 1 1
organic ORG 2 2 2 2
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personality as well. This makes the development of upgrading thcory much more
complicated.

It would be highly desirable to formally merge the fractal analysis and the discri-
mination analysis. There is a relation between the fractal dimension D and the question
stability.

It must be emphasized that the present level of knowledge does not allow climination
of human experts from any decision making. This decision making cannot be totally
objective because of information shortage. Therefore, the only possibility is a symbio-
sis of human reasoning, and the high-speed data processing offered by computers.

APPENDIX 1

DISCRIMINATIVE POWER
A simple example of a vague question is:
IS THIS UNITE OPERATION RELIABLE? ArLn

The answer that will be given to this question depends on the subjective understanding
of what “all right” means. For simplicity, lct us suppose that there are just two possible
answers, namcly YES and NO.

A human subject (cxpert or user) will have some knowledge concerning the evalua-
ting of an attribute x of the system under study. The cvaluation of an attribute is exclu-
sively connected with the general understanding of the attribute x:

x>C,, A 12

where Cy) is a cut off point.

A human expert will have a subjective perception of the cut off point C, of a
question under study. Let the evaluation of the specific system attribute be S. Then the
subject will answer YES if

S>C, (A 1.3)

otherwise he/she will answer NO.

This simple example of a question answering mechanism is a simplification. One
major limitation is that there is no mechanism for evaluating uncertainty in the answer.
It would be much more realistic to allow for answers such as:

VERY LIKELY YES. (A 1.4)

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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This requires some non traditional formalism to be developed to evaluate the
uncertainty. One possible approach is to ask the same question twice to cach of a
number of experts®!. The tested population (c.g. a sct of experts) is, using the question
under study, divided into three classes:

(YY, NN, ), A 1.5)

where YY is a set of those respondents who twice answered YES, NN twice NO, and
C is a set of thosc that changed their answers.
The following concepts are used to characterize the question under study:

BALANCED-EXTREMAL
STABLE-VARIABLE. (A 1.0)

A question is stable if the cardinality of the set C (see (A 1.5)) is small in comparison
with the cardinality of the sets YY and NN. A non-stable question is a variable
question. A question is balanced if the cardinality of the scts YY and NN arc appro-
ximately identical, otherwise it is extremal.

The cardinality of the set C

car (C) = a measure of question uncertainty A 17)

(sce (A 1.5) may be used to qunatify the uncertainty in the question.
Let us supposc that the following sct of fuzzy conditional statements

ilfA, and ...and A then By or

il Ay and ...and A, then B, or A18)

ilfA,,and ...and A then B

m.n

is 4 fuzzy model and its discriminative power is to be cvaluated. Fuzzy sets (sce Fig. 1)

ApB i=1,2...m j=1,2...n (A 1.9)

arc one dimensional (a piccewise linear grade of membership, see Fig. 1) and can be
casily specificd or/and modificd using points a, b, ¢, d.

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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The Formal Analysis of an Answering Mechanism
Let us supposc that a question splits a set of s, different objects into r different classes:

mpy, my, ...m,

car(m)) + ...+ car(m,) = s,
(A 1.10)
where car(T) is the cardinality of set T.
A special case where r = 3 may be interpreted as a YES-NO-C question (see (A 1.5))

sy = car(YY) + car(NN) + car(C) . A11D

The number of objects is s,. Therefore the total number of all possible pairs of
objects is

Sy (s, - D2 A1.12)

Two objects cannot be discriminated by the question if their answers belong to the
same class m;. The number of pairs of objects which belong to the i-th class is

m, (m; - 1)/2. (A 1.13)
An index of internal discriminability I, is (sce ref.*?):

I = 1-ms,.

Let

loiw = min(ly, ... 1).

min

The maximum value of index /. is attained when

min

m/s, = ”'J/-"n Li=1,2,...,r. (A 1.14)

Therelore the balanced question (sce (A 1.6)) has the highest internal discriminability
I,y because
car(YY)/s, = car(NN)/s, .

In what follows answers D

D = (I DO NOT KNOW) (A 1.15)

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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mean that the knowledge base (A 1.8) cannot answer a certain question. This type of
answer substitutes type Cif an expert system and rather than a human being answers a
query.

Sets C (A 1.5) or D (A 1.15) arc buffers between YES and NO answers. If this buffer
is large then there is low risk that a YES answer is interpreted as a NO answer and vice
versa. The cardinality of sct D is used as a measure of uncertainty so then in same sense
an adequate level of uncertainty is uscful for discrimination (see (A 1.7)).

Consistency Test for a Fuzzy Knowledge Base
The following n knowledge bases are uscd for a consistency test:

KB, KB,, ..., KB, , (A 1.16)
where the i-th knowledge base KB; is (compare with (A 1.8)):

ilA;and ...and A, then By or

ilA;_;;and ...and A, _, then B _ or
ifA;, ;and ... .and A;, | then By, or
ifA,,and ...and A then B .
A fuzzy sct
rp = Ajjand .. and A (A 1.17)
is submitted as a query. An answer of the knowledge base KB; (A 1.17) is R,
r, > KB;(A1l16) — R;. A1.18)

There are several algorithms for evaluating R, (sce c.g. refs™34).

The complete consistency test gives a sct of n fuzzy scts (answers):

R,Ry ..o R, . (A 1.19)

Collect. Czech. Chem. Commun. (Vol. 58) (1993)
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Fuzzification

Often, as a result of the sparseness of realistic knowledge bases in such fileds such as
ccology, cconomics and engineering the following non fuzzy but absolutely vague
answer is obtained:

(Mp(») =0 ye€ U)=1DO NOT KNOW (scc (A4 1.15)), (A 1.20)
where

Hi() A 121

is the grade of membership of y fuzzy set B and U is an universe of variable y.

In this casce the fuzzification can be used. The fuzzification procedure increases the
generality of the question ry (see (A 1.18)); all its one-dimensional fuzzy scts A are
fuzzilied as follows (sce Fig. 1):

a-b-a)f, — a
d+d-¢)f, — d, A 1.22)

where f; is the fuzzification coefficient of the i-th variable.

Itis often the case that the first fuzzification is not sufficient. The I DO NOT KNOW
answer (A 1.20) is obtained again. In this case another fuzzification is incvitable. How-
cver there must be an upper bound for a total number of fuzzifications. Since a question
that is too fuzzy gives answers that are not relevant.

A very simple stop criterion is the total fuzzification cocfficient F

Fi>u, A 1.23)

where « is a current number of fuzifications.

A complementary stop criterion is the activation of a prescribed number of the condi-
tional statements in knowledge the base (4 1.8).

The similarity of two m dimensional fuzzy sets V, Wis

s(n, W, V) = s(n, V, W) = min (max(min(myi(X)), uw;(X))))
I<j<n X (A 1.24)

The i-th statement is activated by the a-dimensional fuzzy query Q if the fuzzy set r,,
see (A 1.18), and Q arc fuzzy similar i.c.

s(n, Q, r) > 0.

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



822 Dohnal:

A sct w(Q) of those statements (A 1.8) which are activated by the query Q is:

w(@) = {i| s(n,r, Q) > 1}, (A 1.25)

where ¢ > 0.
The ratio p indicates the level of knowledge base (A 1.8) activation:

p = car(w(Q))/n . (A 1.20)
Provided the s-th statement is tested (as a part of the consistency test (A 1.16)) then
w(r) = {ils(n,ror)>t, i=1,...,ms=i} Fpr>uug(sce (A 1.23))

pp, = car(w(ry)), | A 1.27)

where uug is the corresponding number of fuzzifications (sce u in (A 1.23)).
There are three parameters which are chosen by the user, namely

Doty Fro (see (A 1.23)) (A 1.28)

p. prescribed minimal value of fraction pp (see (A 1.27)) of activated statements
Po<pp, s=11,...,m,
t, prescribed minimal value of the similarity, (sce ¢ in (A 1.27)) which is considered as
significant.
Interpretation of Results

Answers R (see (A 1.19)) must be interpreted as elements of sets YY, NN and D. There
arc many possible algorithms, once of which is specified below.

The consistency test results R are used to evaluate the following similarities, sce (A
1.8), (A 1.19):

s; = s(LR,B), i=1,2,...m. (A 1.29)
The fuzzy sct R; is interpreted (using ;) as follows:
it
(po<pp;, fort=1, (sce (A 1.27,A1.29))
and

F> uu, (sce (A 1.8, A 1.22, A 1.27)) (A 1.30)
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then R, €YY
it (p, > pp; or Fy < uu) A 1.31)
then R; € NN

il (not (YY) and not (NN) then R, ED. (A 1.32)

Estimation of Knowledge Base Extremality and Stability
Normalized fractions yy, nn and cc are (see (A 1.8))

yy = car(YY)/m

nn = car(NN)/m

cc = car(D)/m A 1.33)

1 = yy+nn+cc. (A 1.34)

A fuzzy interpretation of rules of thumbs requires a fuzzy specification of the follo-
wing fuzzy relations:

LA Targer; CL considerably larger; RE roughly cqual. (A 1.35)
So then the following relation
(yy + nn) (CL) cc
means that yy + nn is considerably larger than cc.

A suitable definition of fuzzy set RE (sce Fig. 4) is (notation is basced on points a, b,
¢ and d (sce Fig. 1)):

‘/r«: = —dy
b =c¢. =0
d. > 0. (A 1.36)

A definition of the fuzzy sets LA and CL (sce Fig. 4) is
a, = 0
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b, = ¢, = d,.,
d, = b, K
ag = b,
by = d,
cg =dy =
K > 1. A 1.37)

Only two constants are needed 1o specify the relations (A 1.35), namely K (see (A 1.37))

and point d,, (sce (A 1.37), Figs 1, 4).

The following definitions are based on common sense. A stability cocfficient is

S = (yy + nn) (CL) (cc)
which means that (scc (A4 1.35), Fig. 4)

S = peL (yy + nn - cc).

An cxtremality cocefficient is

E = (yy (CL) nn) or (nn (CL)yy),
where X or Y = max(X,Y).

GRADE OF MEMBERSHIP

IT LA CL

Fii. 4

> ably larger

(A 1.38)

(A 1.39)

(A 1.40)

Fuzzy specification of relations RE
roughly cqual, LA larger, CL. consider-
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A balanced cocfficient B is
B = yy (RE)nn. A 141

A variable cocfficient Vis
V = (cc (LA) (yy + nn) or (cc (CL) (yy + nn). (A 1.42)

The fuzzy dcefinitions of cocefficients S, E, B and V must be indirectly based on the
following common sense “feeling”:

S 1-V

]

E

1-B. (A 1.43)

It indicates that c.g. an increasce in stability is counterbalanced by a decrease in vari-
ability. This fecling is quantificd by constants K, d,, (sce (A 1.36), (A 1.37)) and Eqs

(A 1.43) arc heuristics rather than equations.

rey

Discriminative Sets
An engincer would be probably satisficd if he would know that a knowledge basc is:

“good” (i.c. has a high discriminative power) for “low” MTBF
“not very good” for “medium” MTBF
“very unrcliable” for “large” MTBF .

In this case three discriminative sets will be used, namely
“low MTBF”, “medium MTBF” and “large MTBF” .

Therefore for engincering purposes an algorithm is needed which accepts not just
answers YES, NO, D (do not know). This is why a fuzzy discriminative sct (FCS) is
introduced .

Every variable has its own set of fuzzy discriminative scts where P is e-th FCS for
J-th variable (sce (A 1.8)):

b, j=12,....n e=1,2,...z A 1.44
J

where z; is the number of FCSs of j-th variable.

The knowledge base (A 1.8) has n + 1 variables. The (n + 1)-th variable is a depend-
ent variable. However any variable can be considered as a dependent variable. This
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comes from requircments of a realistic man-machine dialogue. Therefore a complex
consistency test is represented by a matrix R (compare with (A 1.19)):

R. i=1,...m j=12..,n+1. (A 1.45)

ij
Let (sec (A 1.29), (A 1.44), (A 1.45)):

V.. = s(l,Ri'j,(Dj‘,) i=1,...m j=1..,n+1;,r=12,...,2z

1,7 i (A 146)

where i-th conditional statement, j-th variable as a dependent variable, r-th fuzzy cogni-
tive sct of the j-th variable.

Industrial applications very often require not only different dependent variables but
different subscts of independent variables as well. A complete study of all possible
subscts is prohibitively time-consuming. However any modest number of chosen
subsets of independent variables can be analyzed by the same algorithm as the compete
sct of independent variables.

COGNITIVE ANALYSIS OF Fuzzy KNOWLEDGE BASE
Let us suppose that e.g. the FCS under study is
FCS = medium MTBF (A 1.47)

then if the corresponding element of the matrix R (A 1.45) is interpreted as NO then the
complete interpretation actually means:

NO medium MTBF . (A 1.48)

Therefore cognitive YES, NO, D are not absolute but relative and they are always
connected with a specific FCS.

The cognitive interpretation of R, ; in a connection with the specific FCS @, (sce (A
1.40)) is:

it (p< pp;, Fr>uug, and v > 1) (A 1.49)

) nJ

then yes .. =1 clse yes .. =0 (compare with (A 1.30
y L) y [N¢ I

it (p,>pp, tor t=0 or Fy<uu) (A 1.50)
then no; ;. = 1 clse no,; . = 0;
il yes;j .= 0and noj; =0 then dd ;.= Tclsedd; =0. (A1.51)

The following simple formulac give cognitive discrimination coefficients yj ., n; (1Jr
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Vi = O yes (i,j,n)/m, see (A 1.49) (A 1.52)

i=1]

m

n = (Y no(i,j,r)/m, scc (A 1.50) (A 1.53)

i=1
m
d, = (E no (i, j,r))/m, sce (A 1.51). (A 1.54)
i=1
Discriminative indexes indicate the discriminative power of all fuzzy cognitive scts
of all variables.
THE INTERPRETATION OF DISCRIMINATIVE RESULTS

The knowledge base (A 1.8) can be stable (S), sce (A 1.38), or variable (V), sce (A 1.42).
The sccond point of view is dichotomous categorization, namely balanced (B), sce (A 1.41),
or extremal (E), sce (A 1.40). There are theoretically VB, VE, SB, SE variants, where
c.g. VB means V and B.

VB YYYYYYYYYYYYYDDDDDDDDDDDDDDDNNNNNNNNNNN
SBYYYYYYYYYYYYYYYDDNNNNNNNNNNNNNNNNNNNNNN
SE YYDNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
SEYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYDNNNNN (A 1.55)

VE variant is practically impossible because many D answers together with many Y or

N answers are mutually exclusive since in this case “many” is taken as relative to the
total number of answers.

The Ternary Diagram and Cognitive Properties of Knowledge Basis

A ternary diagram is a common graphic representation of a chemical composition of a
ternary mixture. Concentrations x, y, z of the mixture give:

X+y+z=1. (A 1.56)

Eq. (A 1.50) represents a point ina ternary cognitive diagram yy, nn, cc (see (A 1.52)
- (A 1.54)):

Yo=Y
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nn = n
cc =d;,. (A 1.57)
Points N, Y, C in the ternary diagram are given as (sce Fig. 5).
N nn=1 c=yy =20
Y yw=1 cc=nn=20
0

D cc = 1 nn = yy

I yy = nn = cc = 0.3333 (A 1.58)

Interval D(T)) (sce Fig. 5) is a sct of points
yy = nn.
Therefore interval D(T)) gives
B = 1 (scc (A 1.41)).
The intervals
ND (yy = 0); DY (nn = 0)
give
B =0.
Therefore E = 1 (sce (A 1.43)).
The following matrix summarizes the numerical values of cocfficients E, B, S, V
(see Fig. 5).

Fii. S
Graphic description discriminative power of “good™

N T5 T6 Tl T2 Y  knowledge bases
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Cocllicients E B S \Y
N 1 0 1 0
Point D 0 1 0 1 A 1.59)
Y 1 0 1 0
I 0.5 0.5 0.5 0.5

Our industrial experience has proved that a sct of constraints is necded to specify
under which conditions certain theoretical recommendations are acceptable for
industrial application’>%,

E.g. point D is absolutely balanced (B = 1). The knowledge base (A 1.8) which by its
propertics corresponds to point D is absolutely balanced. The balanced knowledge base
has the highest discrimination index (sce (A 1.14)). However the fact that the know-
ledge base is balanced is not an advantage because its extremal variability (sce (A 1.59)).

The balanced knowledge basc is considered as well balanced if its ternary diagram
point is in circle Z (sce Fig. 5). Point 1 is the center of circle Z. Its radius is (T,)(T,).

(T)(Tg) = 0.25

Any knowledge basce that is not well balanced i. ¢. any point outside the circle Z is
not very good for realistic discrimination.

Triangles N(T,)(Ts) and Y(T,)(T;) (sce Fig. 5) are sets of all points which arc consi-
dered as not acceptably extremal from the point of view of discrimination. The rest of
the triangle NDY is therefore practically stable. An example of a realistic result of the
discriminative power is given in Fig. 4.

yy = 0.18
nn = 0.45
cc = 0.37 (A 1.60)

The absolute valuc of the interval [ — Py (see Fig. 2)
interval TPy ¢ (A 1.61)

represents the discriminative power of the set of conditional statements (A 1.8).

OPTIMIZATION ALGORITHM

A general mathematical programming problem can be define as follows (sce c.g. ref.*%):
minimize an objective function f;
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min f(X) A 1.62)
subjected to
HX) =0
GXx) s 0, (A 1.63)
where
X = (X, Xo oo 0 X)) (A 1.064)

is an n-dimensional vector. A solution is vector X

J(Xy) = min f(X)

HXy) = 0

GXy s 0. (A 1.65)
The problem of the best parameters cvaluation (A 1.28) can be very casily transfer

into an optimization problem by the following, transformation
X, < putFr (A 1.60)
and

) < 1Pk (A 1.67)

APPENDIX 2

FRACTAL ANALYSIS
As a basic introduction to the ideas of fractal analysis, consider the following hypothe-
tical study of the British coast Iength. Suppose that this coast was measured scveral
times, cach time using a different measuring unit from the sequence:

u,u,, ..., U, @Az2n
where

U <U,, for I si<v. A 22)
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Let
L(Uy) (A 2.3)

be the total length of the sea coast if the s-th measuring unit U (sce (A 2.2)) is used. A
coastline has a characteristic roughness. Consequently as the scale of measuring unit
decreases, so it will resolve more detail and hence measure a greater total length. In
general, it can be demonstrated that for all o,

L(U) > L(U;,)) . (A 2.9)

A coast detail of characteristic dimension d, perhaps a circular stone for example, is
certainly “detected” by the measuring unit U, provided

U, <d. (A 2.5)

In this case the stone contributes to the total coast length. Whenever the stone is smaller
than the measuring unit then the measuring procedure can “overlook” this stone.
Thus the function

L = f(U) (A 2.6)

is non-increasing. For a realistic coastline it is purely decreasing.
The following specification of the function (A 2.0)

L(U) = KUt-M (A 2.7)

was based on empirical observation. However, it can be formally proven using an
analysis which is analogous to the entropy specification.

So, in this example the measured coast length is not a constant. It is a function of the
measuring unit used (see (A 2.4)). Therefore the coast length itself cannot be used to
provide an unambiguous characterization of the coast. From equation (A 2.7) it can be
scen that according to fractal analysis two parameters are needed to characterize the
coast, namely K and D. These can be used to specify the properties of the coast.

The parameter D is a mecasure of the degree of “roughness” of the object being
measured. Under certain conditions, which are usually valid in the cases of interest
here, this parameter corresponds to the Hausdorlf dimension. The Hausdorff dimension
of smooth lines is equal to one i.c. to its natural dimension. A topological (natural
geometric) dimension, D, of an i-dimensional set is

Dy = i. (A 2.8)
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However, non-smooth lines have
D“ 2 DT’ (A 2.‘))

where Dy is the Hausdorff dimension. The inequality (A 2.9) is correct for any n-
dimensional sct.

The fractal dimensionality D (A 2.7) is under certain conditions identical with the
Hausdorff dimension (A 2.9).

D” = D (A 2.10)

The fractal dimension can be casily evaluated provided the relation L-U is known
quantitatively (sce (A 2.7)):

log (L) = log(K) + (1 - D) log (V). A211

Using (A 2.11) it is casy in log (L), Y-, and log (U), X-, axcs to evaluate D since it is
a lincar function:

Y=C+(1-D)X, (A 2.12)

where C is a constant. The key problem is therefore to cvaluate quantitatively the rela-
tionship (A 2.7).

FRACTAL SCREENING

Supposc a black and white TV camera is used to observe a two dimensional object.
This object is recorded from several different camera-object distances. The goal of
these observations is to gradually climinate object details. The camera sensitivity is
constant, so, as the camera-object distance increases, only more and more significant
features are recorded (are distinguishable). As a result of these records the following sct
of pairs is obtained:

(T,S)i=1,2,....n (A 2.13)

where T; is the i-th camera-object distance, S; is the i-th TV image.

Let us supposce that there are just black and white pixels on the TV screen. Each
screen record S; contains a set of black and a sct of white pixels:

S, = B, W)i=1,2,...,n, (A 2.14)

where B,, (W) is the set of black (white) pixels on the i-th image. An isolated black

pixcel i.c. a detail disappears if the distance T (A 2.13) increases. A substantial fcature
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represented by several pixels can be recorded even from a large distance. However,
some details of this feature will gradually disappcear.

Suppose the object under study is again a coast line. Then the length of the “coast”
on the i-th screen image is directly proportional to the ratio:

L, = card(A)/z, (A 2.15)

where card(A) is the cardinality of the sct A and z is the total number of screen pixels.
A simple commonscnsc analysis can again be uscfully applied to show that:

if T,<T,,, then L;>L;,,. (A 2.16)

As the camera-object distance is changed, so the camcera cannot identify the same
amount of detail on the screen. The total number of black pixels (see (A 2.14)) will
gradually decrease as the camera-objectiv distance increasces:

B, >B.,,. (A 2.17)

However, the total number (black plus white) of pixels is constant and cqual to z (sce
(A 2.15)).

Therefore, from equation (A 2.15), the observed coast length decreases with increa-
sing object distance (sce (A 2.3)):

Li>L,,. (A 2.18)

The climination of detail in an m-dimensional space is strictly analogous to the above
two-dimensional casc.

A simple and cfficient procedure for evaluating the fractal dimension D (A 2.11) of
a rcalistic (extensive, vague and inconsistent) knowledge base is needed. The difficulty
is that any rcalistic quantitative knowledge base (c.g. a set of fuzzy conditional state-
ments) can have more than 100 variables. This is much too complex a situation for a
mathematically cxact analysis, and so some approximation technique must be used in
order to obtain a computationally tractable algorithm.

The development of any tractable algorithm based on cquation (A 2.11) necds a
precise specification of the lIength and measuring unit (or threshold value) analogics.
What is required is some mechanism for evaluating appropriate values L and U to insert
into the above described algorithm. The problem will be choosing suitable analogics
which are both simple and expressive at the same time.
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Screening of Set of Fuzzy Conditional Statements

In principle it is possible to screen all those knowledge bases where a difference can be
made between detail and non-detail. The specifications of the screening algorithms
differ according to the characteristic of the knowledge bases. Nevertheless once a
specification of detail as a function of threshold level is established then the procedure
is straightforward.

Any mcasurable knowledge base is suitable for the application of fractal analysis. As
a relatively simple problem a set of fuzzy conditional statements is studiced.

The knowledge base is represented by a set of fuzzy conditional statements:

if A, then B, i=12,...,m, (A 2.19)

where
A = A A AA; L. (A 2.20)

Let
r= A A AA L AB A221

represent the conditional statement (A 2.19) as an (n + 1) dimensional fuzzy set.

Non-Structural Fractal Analysis

The simplest variant is studied here, namely where the mutual connections among
statements are not taken into consideration. Roughly speaking only “volumes” of state-
ments are considered and not their layout. In this case every one-dimensional fuzzy sct
Aij
volume through differences (see Fig. 1):

in the n-dimensional fuzzy set A,, sce (A 2.20), contributes to an a-dimensional

d —a zero a-cutic. o =10 A222)

¢ —bone a-cutic. a=1 A223)

and not by their absolute values. An a-cut is a conventional set (an interval in the
one-dimensional casc) of the clements which have their grades of membership higher
than the given «. In the example shown in Fig. 1, the zero a-cut is the interval of length
(d—a).

A length L, as defined in (A 2.3), is a mcasure which corresponds to a onc-dimensio-
nal object (line). A fractal analysis of an (n + 1)-dimensional fuzzy model (A 2.21)
needs an (n + 1)-dimensional volume V.
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An a-cut volume of the n-dimensional fuzzy set A; (A 2.20) and (n + 1)-dimensional
ri (A 2.21) arc as

ay (A); ay (). (A 2.24)
For a = 0, we have from Eq. (A 2.21):
Oy(r) = (H(d/\n‘j -y ) (dyi - ag), (A 2.25)

where dp;; is point d (sce Fig. 1) of the grade of membership function of the one-
dimensional fuzzy sct A, i, sce (A 2.20). The same notation is used for points b, ¢, d (sce
Fig. 1).

For a = 1, we have:

i

Iy(r) = (H("A.;j - ”Ai,j)) (cii = byi) - (A 2.20)

The general expression for ay(A(7)), for 0 < « < 1, can be obtained from a “combi-
nation” of cquations (A 2.25) and (A 2.26):

ay(r) = 0y(r) (1 = )™ + 1y(r;) o A 2.27)

The formula (A 2.27) defines the volumes for all m scts ry (see (A 2.19)) of condi-
tional statements.
The following simple algorithm is used for detail elimination:,

il ay(r) < U then ayp(r) =0 clse ayp(r) =ay(r)i=1,2,..,m, (A2.28)

where U is a threshold volume which is used as a sort of n-dimensional measuring unit
(sce (A 2.2)).
The total volume of the fuzzy model (A 2.19) is:

Taye = D ayidr) . (A 2.29)
The measured volume is a function of U and «
Tayy = g (U, w) (A 2.30)
in an analogous way to the function (A 2.6).
The function (A 2.30) enables the evaluation of the fractal dimension D (sce (A 2.7),

(A 2.12)) with < as a parameter (see Fig. 1), that is,

D = f(u). (A 2.31)
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Note that the total volume T ayp (A 2.29) is not “homogencous” from the point of
view of a dimensional analysis. Different variables may have different dimension (c.g.
kg, °C, ctc.). The simplest way to take account of this is to apply weight to the different
variables:

W, Wa, oo W, Wo s (A 2.32)

where W, , | is the weight of the “dependent” variable B (see (A 2.19)).
We then have a weighted total «-volume (A 2.29). For a = 0 (sce (A 2.22), (A 2.25)):

WOy(r) = (H ‘VJ((I»\(i.j) —an ) x Wy, 1(dyi - ag;) (A 2.33)
J

And for a =1 (A 2.23, A 2.20):

Wiy(r) = (H Wi (caij = bai) x Wa s (o - by;) - (A 2.39)
J

If we let
Vi, Vo oo,V (A 2.35)

be the weights attached to the conditional statements (see (A 2.19)), then the total
weighted volumes are:

TOy = 3 WOy(r) V. (A 2.36)

Tly = O Wiyr) V. (A 2.37)

Fractal Optimization

Using the same optimization philosophy as presented in (A 1.62) it is possible to mini-
mize the level of chaos represented by the fractal dimensions. There can be differemt
sets of independent variables X (see (A 1.62), (A 1.63)). The obvious candidates arc
fuzzification cocfficients f (sce (A4 1.22)).

A very promising application of fractal optimization is a problem which can be
specified as follows:

objective function = integrated modification of the knowledge basc (A 2.19) (A 2.38)

constraint D =i (sce (A 2.8)) . (A 2.39)
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Such optimization problems can increase efficiency of complex upgrading activities
considerably.

Fractal Reconstruction

Information intensity of the conventional formal tools (c.g. statistics) is the severest
problem of any realistic analysis. An information intensive meta heuristics must be
used to substitute the missing knowledge items?’.

The meta heuristics must be based, directly or indirectly, on commonsense™®. They
must represent this commonsense. This is the only general source of knowledge which
is available in engineering practice. One possible meta heuristic is based on the idea of
fractal reconstruction. The extreme tvpe of fractal reconstruction is:

— reconstruct a knowledge base with prescribed fractal dimension.
A more flexible meta heuristic is:

— generate a knowledge base which when merged with a known knowledge
base gives a knowledge base with the prescribed fractal dimension.

Many different mieta heuristics can be presented. Useful analogy and therefore very
promising inspiration is offered by different algorithm for treatment of numerical pictures™.

REFERENCES

. Wong K. A.: Quality and Reliability Eng. Int. 8. 251 (1990).

. Koivisto R.. Kakko R.. Dohnal M., Jarvelainen M.: Int. J. Loss Prevent. Process Ind. £, 317 (1991).

Ntyen C. Az Reliability Eng. and Safety Systems 37, 31 (1990).

. Dohnal M.: Microclectronies and Reliability 32, 867 (1992).

. Arvo J., Kirk D.: Comput. Graph. 2.4, 63 (1990).

. Leiteh RO R., Wicgand M. L., Queck . Cu: ‘The Eur. J. Artificial Intelligence 3, 58 (1990).

. Russel S, Lt The Use of Knowledge in Analogy and Induction. Pitman, London 1989,

. Dohnal M.: Comput. Ind. 6, 115 (1985).

. Dohnal M., Krause P., Fox J.: Fractal Analysis of Large Scale Heterogeneous Knowledge Bases. Proc.
RP4 First Workshop. DRUMS, Esprit Rescarch Action 3085, Pucrto Andraitx. Mallorka, September
1990,

10. Davis L0 Representations of Commonsense Knowledge. Morgan Kaufamna, San Matco 1990,

L1 Dohnal M.: Microclectronies and Reliability 32, 1157 (1992).

12. Koivisto R.. Vaija P Dohnal M.: Intelligent Interface of Accident Databases. Proc. 6th Int. Symp.

Loss Prevent. and Safety Promotion, p.98.1. Oslo 1989.

13. Dohnal M., Vykydal J.. Kvapilik M., Bures P.: Int. J. Loss Prevent. Process. Ind. 5, 125 (1992).

14. Vaija P., Jarvelainen M., Dohnal M.: Reliability Eng. J. 16, 237 (1986).

15. Dohnal M.: Microclectronics and Reliability 32, 539 (1992).

16. Dohnal M.: Collect. Czech. Chem. Commun. 56, 2107 (1991).

17. Raiman O.: Artificial Intelligence 57, 11 (1991).

A Y

[P o)

<

Collect. Czech. Chem. Commun. (Vol. 58) (1993)



838 Dohnal:

18.
19.
20.

25.
26.
27.
28.
19,

30.
31
32

Kolar D., Dohnal M.: Wear 110, 35 (1986).

Vaija P., Dohnal M.: Acta Polytech. Scand. 179, | (1987).

Brian H. Kaye: A Random Walk Through Fractal Dimensions. VCH Verlagsgesellschaft, Weinheim
1988.

. Keller J. M., Downey T.: Fuzzy Segmentation of Natural Scenes Using Fractal Geometry. Proc. SPIE

— Int. Soc. Opt. Eng. (U.S.A), Vol. 1002, pta. 1, p. 369 (1988) (Visual Communications and Image
Processing, 88 Cambridge, MA, U.S.A.).

. Peitgen 1. O., Saupe D.: The Science of Fractal Images. Springer, Berlin 1988.
. Dubois D.: J. Integrated Study of Artificial Intelligence, Cognitive Science and Applied Epistemology

8.5 (1991).

. Nowakowska M.: Qualitative Psychology: Some Problems and New ldeas. North Holland, Amsterdam

1983.

Nowakowska M.: Cognitive Science. Academic Press, Orlando 1986.

Dohnal M.: Collect. Czech. Commun. 51, 1027 (1986).

Babinee F.. Dohnal M.: Collect. Czech. Chem. Commun, 54, 26092 (1989).

Dohnal M., Kvapilik M., Dohnalova J.. Vykydal J.: Microclectronics and Reliability, in press.
‘Toshisuke Hirano: Int. J. Loss Prevent. Process Ind. 3, 321 (1990).

Cao Tianjie: Reliability Eng. Safety Systems 2., 1 (1989).

Nowakowska M.: Mat. Soc. Sci. 9, 93 (1985).

Dohnal M.: Practical Application of Cognitive Algorithms in Chemical Industry. Proc. “Computers in
Chemical Industry™, p. 123. DECHEMA., Erlangen 1989,

. Dubois D.. Prade I1.: Fuzzy Sets and Systems /0, 143 (1991).
. Dubois D.. Lang H.. Prade I1.: Fuzzy Sets and Systems /0. 203 (1991).
. Dohnal M.: Cognitive (Psychological) Models in Process Design. Proceedings of the Use of Compu-

ters in Chemical Engincering, CHEMDATA 88, Ve.. 1193 - 201. Gothenburhg 1988.

. Himmelblau D. M.: Applied Nonlinear Programming. McGraw Hill, New York 1972,
. Merrill J. W. L., Port R. F.: Neural Networks -/, 53 (1991).

. Trivedi M. M., Chu Xin Chen: Comp. Vision, Graphics, Image Proc. 51, 235 (1990).
. Gottlich C. C., Kreyszig H. E.: Comp. Vision, Graphics, Image Proc. 51, 70 (1990).

Translated by the author.

Collect. Czech. Chem. Commun. (Vol. 58) (1993)





